Superluminal Signals in Quantum Optics

Superluminal Signals in Quantum Optics

Theoretically and experimentally the superluminal signals arising at passage of an electromagnetic pulse through thermally excited media are investigated. It is shown that the equations of quantum electrodynamics solved by standard methods explain the appearance of such signals as a consequence of fluctuation properties of secondary quantum fields. It is indicated that quantum averages from operators of electric strength and magnetic strength in these signals are equal to zero. The field energy is different from zero. Such signals have no classical analogues. The effective superluminal velocity of the laser beam after it crosses the cylindrical parallel layer of thermally excited atoms has been calculated. The results of experiments to measure the effective superluminal velocity of the beam passing a cylindrical layer of air inside a hot metal tube are given. Quantitative agreement of theoretical and experiment data is stated.

View Volume:

Editor 251News

leave a comment

Create Account

Log In Your Account